How to Use Torii

Purpose

In this study, you will use a tool called Torii for in order to create and make updates to tutorials.
Torii is a prototype tool for writing tutorials with features to help keep the code and outputs in
the tutorial consistent, and to help you check the code is complete.

Follow this guide to get familiar with Torii. Please ask the facilitator any questions you might have
about how the tool works and creates outputs. This study is about understanding the usability and
expectations about the tool, and this information is important to us.

Step 1: Layout of Torii

The experimenter will open Torii for you on a pre-loaded tutorial.

@ ticTacToe.py X w m - Tutorial Editor o
» ‘] ; im;;ort i Torii Tr ADD TEXT <> ADD SNIPPET | M UNDO [+ 5] H o

2 - &
3 theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
4 [mid-L': * *, 'mid-m': 'Y, tmid-R': ‘Y, A Tic-Tac-Toe Board o
5 ‘Tow-L'z ¥, 'low-M': 'ty MlowRY: !) O
6 A tic-tac-toe board looks like a large hash symbol (#) with nine slots that can each c3 et
7 moves = theBoard.keys() an X, an 0, or a blank. To represent the board with a dictionary, you can assign each slot a -0
8 string-value key, as shown in the figure below. &
9

10 def printBoard(board): You can use string values to represent what's in each slot on the board: X', '0’, or "' (a space i

11 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R']) character). Thus, you'll need to store nine strings. You can use a dictionary of values for _

12 printtot=p=1) this. The string value with the key 'top-R' can represent the top-right corner, the string value A

13 print(board['mid-L'] + '|' + board('mid-M'] + '|' + board['mid-R']) with the key 'low-L' can represent the bottom-left corner, the string value with the key 'mid-

14 printli——=1) M' can represent the middle, and so on ®

15 print(board['low-L"] + '|' + board['low-M'] + '|' + board['low-R'])

16

& "top-L' ['top-M' 'top-R'

18 def getMove(board):

19 while True:

20 move = random.choice(moves)

21 if (theBoard[movel == ' '): ‘mid-L' ‘mid-M" ‘mid-R'

22 return move

23

24

25 print("Starting board") "low-L' “Low-M' "Tow-R'

26 printBoard(theBoard)

27

28 turn = 'X'

29 for i in range(9): This dictionary is a data structure that represents a tic-tac-toe board. Store this board-as-a-

30 dictionary in a variable named theBoard . Open a new file editor window, and enter the

31 move = getMove(theBoard) following source code, saving it as ticTacToe.py:

32 theBoard [move] = turn

33 print("\n" + turn + " takes a turn") theBoard = {'top-L': ' ', "top-M': ' ', "top-R': ' '

34 printBoard(theBoard) wid-L'; ' "5 Tmid-MYio Y 'mid-RY: T

35 "low-L': " ', "low-M': ' ', "low-R': ' '}

36 if turn == 'X':

37 turn = '0' .

38 S ikes The data structure stored in the theBoard variable represents the tic-tactoe board in this

39 turn = 'X' figure. {‘:\,s

2
O Python3.7064-bit @040 Ln4, Col13 Spaces:2 UTF-8 LF Python @

Torii contains two windows. On the left (A), the view of the source code you're trying to make a
tutorial from. On the right (B), an interactive tutorial editor.

(continue on next page)

Step 2: Change the Code

In Torii, code is linked between all code-related artifacts:

e Changes to the source code affect the snippets in the tutorial
e Changes to the snippets in the tutorial affect the source code
e The outputs update when the code is changed.

In this step, you should:

e Make some changes to the source code, and see it change the snippets
e Make some changes to the snippets, and see it change the source code

(Note: Sometimes, changes you make to the code will not be mirrored in the other places the code
appears. This is because there can be versions of snippets, which we’'ll discuss later).

(continued on next page)

Step 3: Outputs Get Updated Automatically

In Torii, the outputs are linked to the code that generated them, and they update live.

Scroll down in the tutorial pane until you see this snippet:

def printBoard(board):
print(board['top-L'] + "|"' + board['top-M'] + 'I' + board['top-R'])
print('-+-+-")
print(board['mid-L'] + "|I' + board['mid-M'] + 'I" + board['mid-R'])
print('-+-+-")
print(board['low-L'] + "|"' + board['low-M'] + "' + board['low-R"'])

When you run this program, printBoard() will print out a blank tic-tactoe board.

print(theBoard)
printBoard(theBoard)

Change some code in the snippet and see the outputs update.

If you want inspiration, try changing all of the “+” signs in the second and fourth print statements

to “x”s. You should see the printed output update to have “x’s.

(continued on next page)

Step 4: Outputs Shows a Reader’s View of the Code So Far

Outputs show the output of all of the code that has appeared in the tutorial so far.

Move an output up and down in the tutorial, above and below other snippets in the tutorial. See
how its output changes based on its position.

You can move an output by click and dragging it.

(continued on next page)

Step 5: What Do the Outputs Really Show?

Unlike Jupyter notebook, or a Python terminal, Torii does NOT run code in the order it appears to
produce outputs. Instead, it tries to build the code the reader will have, and show the output of
the code at that step of the tutorial.

It does this by collecting all the code that appears in a snippet in the tutorial, and then putting
those snippets in the order they appeared in the source code file.

For instance, try moving this cell...
print(theBoard)

Above this cell...

theBoard = {"top-L": " ', "top-M": " ', "top-R': ' ',
'mid-L': ' ", 'mid-M': 'X', 'mid-R': " ',
"low-L": " ", "low-M": ' ", "low-R': ' '}

This should break the output, because the “print” statement that uses theBoard will appear before
theBoard is defined, right? No!

In fact, you should see that the output stays the same.

At each of the outputs in the tutorial, Torii adds the snippets together in the order they appeared
in the source code. This means you can show code in whatever order you want, without needing to
be constrained by showing it in the order it appeared in the original file.

How can you tell what Torii is running to produce output? Open the “program snapshot” right
before the output:

1. Find thefirst snippet above an output
2. Clickit
3. Click on“View as Program Snapshot”

What do you see here? It’s all of the code that’s been shown in the tutorial so far, in the order it
appeared in the original source file. This is what is run to produce the output right below it.

(continued on next page)

To see another example, look at the snapshot for this snippet.

screen. Make the following addition to the top ++ =+ == vran
VIEWAS = SNIPPET | PROGRAM SNAPSHOT

def printBoard(board):
print(board['top-L'] + '|I' + board['top-M'] + '|' + board['top-R'])
print('-+-+-")
print(board['mid-L'] + "' + board['mid-M'] + "|' + board['mid-R'])
print('-+-+-")
print(board['low-L'] + "I' + board['low M'1 « "1' « bhocndliT~w DIAX
= ADD CONSOLEOUTPUT & W

Notice how printBoard appears at the top of the snapshot, even though it was defined below the
other code in the tutorial. This lets you, for instance, keep a source file where code has a very
structured appearance, while giving you freedom to explain code in any order you want.

Step 6: Hide Distracting Code

Sometimes, you may want to hide code from the reader that might be distracting. You can hide
code from the tutorial, while still using it to produce outputs, by clicking on a cell’s “hide” button.

As an example, let’s assume that you think users should already have printBoard in their file
before they use your tutorial, and you want to hide it here, but keep it as part of the execution
environment. Click the hide button for that cell.

def printBoard(board):

print(board['top-L'] + "I" + board['top-M'] + 'I' + board['top-R'])
print('-+-+-")
print(board['mid-L'] + "I" + board['mid-M'] + 'I' + board['mid-R'])
print('-+-+-")
printCboard['low-L'] + "|" + board['low M'T + "1' + haandlEean A8

.

= ADD CONSOLE OUTPU]| &%

Step 7: Add Snippets, Add Outputs

In upcoming tasks, you will add new content to tutorials.

Let’s say you want to add a step that changes the board, and prints out the new board. Add these
lines to the very very bottom of the “ticTacToe.py” file:

theBoard['mid-M'] = 'X'
print("\n")

print("New board")
printBoard(theBoard)

Select all four lines in the source code editor. Then click “Add Snippet”

Torii Tr ADD TEXT <> ADD SNIPPET . UNDO O B
A new snippet will appear in the tutorial, below the previously selected cell. If no cell was
previously selected, it will appear at the top of the tutorial.
Then, add an output by clicking on “Add Console Output” on the new snippet.
theBoard['mid-M'] = 'X'
print("\n")

print("New board")

printBoard(theBoard)
= ADD CONSOLEOUTPUT '» W

The generated output is live. Try changing the code in the snippet and seeing the output change.

(continued on next page)

Step 8: Make Local Edits to Code

Sometimes, you will want to change code at some point in the tutorial that has appeared before.
To change code that has appeared in the tutorial before, you must follow a few steps:

Click the snippet where you want to change previous code
Click “View as Program Snapshot”

Click the place where you want to make a change

Turn off the “Sync Edits” button

NSNS .

Now you can make changes to just that piece of code, which will show up in all future snippets.

For example, let’s say you want to print out the text “Old board” before the first board is printed in
the very last output. How might you do this?

VIEWAS | SNIPPET | PROGRAM SNAPSHOT
theBoard['mid-M'] = "X’
print("\n") def printBoard(board):
. print(board["top-L'] + 1* + board['top-M'] + *I' + board['top-R"1)
print("New board") P
privodniietoan = nsoLeoutPur @ Il print(board['mid-L'] + 1* + board['mid-M'] + *I* + board['mid-R"1}
= - print(’-+-+-')
printCboard['low-L'] + 'I* + board['low-M'] + 'I' + board['lon-R'1)

theBoard = {'top-L': ' ', 'top-M': ' ', ‘top

Eii 1. Click on this cell A it
il pr\ntﬂonrd(the‘ﬁuur‘dj @ 5ync eais]
theBoard['mid-M'] = 'X'
New board print (et
H n H n
Bl 4, Click "Sync edits" to break
IX1 - . - -
e link with previous snippets
.|
3 VIEW AS SNIPI PROGRAM SNAPSHOT VIEW AS SNIPPET PROGRAM SNAPSHOT
theBoard['mid-M'] = ‘x'| def printBoard(board):
ArintC"\a" printCboard['top-L'] + 'I' + board['top-M'] + 'I' + board['top-R'1)
- . printC’-+-+-')
2. Click "View as Program Snapshot" printCooardC"mid-L"] + *1° + boord['mid-u'] + *I° + board[*mid-R"T)
- print('-+-+-')
printCboard['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
theBoard = {'top-L': ' ', "top-M’: ' ', "top-R': ' '
'mid-L': ' ', 'wid-M': ' °, "wmid-R': ' '
Slow=lte ot "low=M": " ', "low-R': ' '}
printC"0ld board")| Syncedis

printBoard(theBoard)

5. Add new print statement
above the old print statement.
This will make this change for

T . this snippet going forward in the
print(board["top-L'] + "' + board['top-M'] + *1" + board['top-R']) N
printC’-+-+-") tutorial.
print(boar mid-L'] + 'I' + board['mid-M'] + '|" 4 board['mid-R'])
print("-+-+-")

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ A
3. Click on this line to make edits

print(tnesodra)

printBoard(theBoard) @ syrceard
theR C'mid-M'1 = 'X'
preiee
print("New board"
printBoard(theBoard)
= a0 fourPur & B

That’s it! Have any questions? If so, ask the facilitator—we want to clear up as much about the tool
and how it works with you as we can before the upcoming tasks.

